
LISTEN AND LOOK

AT YOUR PHP CODE!

Gabriele Santini
Forum AFUP 2010

Gabriele Santini

 Architect/Consultant at SQLI

 Contributor to PHP_CodeSniffer
 So expect a special focus on this…

 Sonar PHP Plugin
 I have to show you!

 Ex-mathematician :
 love business modelling
 love architectures
 love quality assurance

Static Analysis

 All you can say about your program without actually
execute the code

 The rest is also interesting, let’s talk about it another time !

 Examples ?

 Syntax check, coding style, anti-patterns, metrics,
OO design analysis, …

 What PHP does before executing the code ?

Levels of analysis

 Lexical analysis

 Read sources linearly searching for known patterns

 Convert them to a sequence of tokens

Levels of analysis

 Lexical analysis

 Read sources linearly searching for known patterns

 Convert them to a sequence of tokens

 Syntactic Analysis

 Parse the tokens to find their logical structure

Levels of analysis

 Lexical analysis

 Read sources linearly searching for known patterns

 Convert them to a sequence of tokens

 Syntactic Analysis

 Parse the tokens to find their logical structure

 Opcode (Bytecode) Generation

 Generates an intermediary code that the Zend Engine
will be able to execute

Lexical Analysis

 Tokenizer 1 <?php T_OPEN_TAG

2 if T_IF

2 T_WHITESPACE

(

2 1 T_LNUMBER

2 T_WHITESPACE

<

2 T_WHITESPACE

2 2 T_LNUMBER

)

2 T_WHITESPACE

{

2 T_WHITESPACE

3 echo T_ECHO

3 T_WHITESPACE

3 "Hello" T_CONSTANT_ENCAPSED_STRING

;

3 T_WHITESPACE

}

4 T_WHITESPACE

5 ?> T_CLOSE_TAG

<?php

if (1 < 2) {

echo "Hello";

}

?>

Syntactic Analysis

 Produces an AST

 Abstract Syntax Tree

 Decompose code in a tree-like form

 Can be executed once a context is given

 Used in compilers

Syntactic Analysis

Opcodes Generation

 Mistery tool…

line # * op return operands

--

2 0 > EXT_STMT

1 IS_SMALLER ~0 1, 2

2 > JMPZ ~0, ->6

3 3 > EXT_STMT

4 ECHO 'Hello'

4 5 > JMP ->6

6 6 > EXT_STMT

7 > RETURN 1

<?php

if (1 < 2) {

echo "Hello";

}

?>

GIVE US THE TOOLS !

PHP_CodeSniffer

 By Greg Sherwood

 PEAR library

 Venerable project

 Code Style

 But also a lot more

 Works at lexical analysis level

 Heavily use the tokenizer extension

PHP_CodeSniffer

 Hands on

PHP_CodeSniffer

 Sniffs
 Classes that detect Violations
 One or more type per class

 Grouped in folders by subject:
 Commenting, Formatting, WhiteSpace

 Files, ControlStructures, Strings

 Functions, Classes, NamingConventions

 CodeAnalysis, Metrics

 You can create your own!

PHP_CodeSniffer

 Standards

 Sets of Sniffs that define your coding style

 Installed :

 PEAR,

 Generic,

 Zend*,

 Squiz, MySource

 PHPCS

PHP_CodeSniffer 1.3

 Rulesets XML!

<ruleset name="MyPEAR">

<description>A variation of the PEAR coding standard.</description>

<!-- Include some additional sniffs from the Generic standard -->

<rule ref="Generic.Functions.FunctionCallArgumentSpacing"/>

<message>Please review spacing in function ‘%s’</message>

</rule>

<rule ref="Generic.NamingConventions.UpperCaseConstantName"/>

<!-- Lines can be 90 chars long, but never show errors -->

<rule ref="Generic.Files.LineLength">

<properties>

<property name="lineLimit" value="90"/>

<property name="absoluteLineLimit" value="0"/>

</properties>

</rule>

<!– Not so important for us -->

<rule ref="Generic.PHP.DisallowShortOpenTag">

<severity>2</severity>

</rule>

</ruleset>

Inside PHP_CodeSniffer

 Sniff class main methods
 register()
 Make the sniff a listener for the declared tokens

 process($phpcsFile, $stackPtr)
 Called by the file during parsing when a declared token is

found

 File
 Represents a parsed file

 Holds the tokens structure and offers convenience
methods

Inside PHP_CodeSniffer

 Life of a Sniff

 DisallowMultipleStatementsSniff

<?php

echo $y;

$x = 10; echo $y;

for ($i = 1; $i < $length; $i++) {

echo 'x';

}

echo $x;

$y = 2;;

$this->wizardid = 10; $this->paint(); echo 'x';

?>

Inside PHP_CodeSniffer

 Life of a Sniff

 DisallowMultipleStatementsSniff

public function register()

{

return array(T_SEMICOLON);

}

public function process($phpcsFile, $stackPtr)

{

[…]

Inside PHP_CodeSniffer

 Life of a Sniff

 DisallowMultipleStatementsSniff

<?php

echo $y;

$x = 10; echo $y;

for ($i = 1; $i < $length; $i++) {

echo 'x';

}

echo $x;

$y = 2;;

$this->wizardid = 10; $this->paint(); echo 'x';

?>

Inside PHP_CodeSniffer

 Life of a Sniff

 DisallowMultipleStatementsSniff

<?php

echo $y;

$x = 10; echo $y;

for ($i = 1; $i < $length; $i++) {

echo 'x';

}

echo $x;

$y = 2;;

$this->wizardid = 10; $this->paint(); echo 'x';

?>

$stackPtr

Inside PHP_CodeSniffer

 Life of a Sniff

 DisallowMultipleStatementsSniff

public function register()

{

return array(T_SEMICOLON);

}

public function process($phpcsFile, $stackPtr)

{

$tokens = $phpcsFile->getTokens();

$previous = $phpcsFile->findPrevious(…);

if ($previous === false) {

return;

}

// Continue =>

Inside PHP_CodeSniffer

 Life of a Sniff (2)

// Ignore multiple statements in a FOR condition.

// First some gym for nested parenthesis

[…]

if ($tokens[$owner]['code'] === T_FOR) {

return;

}

[…]

// If the previous semicolon is on the same line we add an error

// to this file

if ($tokens[$previous]['line'] === $tokens[$stackPtr]['line']) {

$error = 'Each PHP statement must be on a line by itself';

$phpcsFile->addError($error, $stackPtr);

return;

}

}//end process()

PHP_CodeSniffer

 At SQLI we have some framework standards

 Zend Framework

 Based on Thomas Weidner work

 Symfony

 In collaboration with Fabien Potencier

 Waiting for a serious release after 1.3 release

PHP_CodeSniffer

 At SQLI we have some framework standards

 Zend Framework

 Based on Thomas Weidner work

 Symfony

 In collaboration with Fabien Potencier

 Waiting for a serious release after 1.3 release

 That’s nice, but…

 Where are the standards for the other tools ?

 I’ld expect a Drupal, Wordpress, Cake official standard

PHP_CodeSniffer

 How far a standard can go in detection ?

PHP_CodeSniffer

 How far a standard can go in detection ?

 Interestingly far for generic PHP Code

PHP_CodeSniffer

 How far a standard can go in detection ?

 Interestingly far for generic PHP Code

 Very far if you know your tool’s structure

 Imagine for example forcing PHP alternative syntax in
Symfony views…

 Or checking for escaping in Zend Views !

PHP_Depend

 By Manuel Pichler

 Functional port of JDepend

 OO design analysis

 Metrics visualisation

 Dependency analyzer

 Works at the syntactic analysis level

PHP_Depend

 How it works

 PHP_Depend first makes an AST off your code

 A « personal » one, made by PHP objects

 ASTComment, ASTClosure, ASTEvalExpression, …

 This is made by the Builder/Parser component

 Using PHP Reflection

PHP_Depend

 How it works (2)

 Then PHP_Depend can answer questions by
« visiting » the AST

 Task of Metrics Analyzers, that extend AbstractVisitor

 IOC, the visitor decides what to do according to AST
Class : visitMethod, visitForStatement(), …

 Analyzers can fire listeners during analyze() call

 To get ongoing informations about the visit process

PHP_Depend

 What it gives:

 The Abstraction/Instability graph

PHP_Depend

 What it gives:

 The Abstraction/Instability graph

PHP_Depend

 What it gives:

 The Pyramid !!

PHPMD

 By Manuel Pichler

 Detects rules violations

 Analog to PHP_Codesniffer

 Works at syntactic analysis level

 Actually on the same AST

 Depends on PHP_Depend

 Has rulesets !

PHPMD

 What it gives:

 Code Size Rules
 complexities, lengths, too many, …

 Design Rules
 OO, exit, eval

 Naming Rules
 Too short/long identifiers, old constructors, …

 Unused Code Rules
 Methods, members, parameters

phploc

 By Sebastian Bergmann

 Simple tool to give basic metrics

 Fast, direct to the goal

 Works mostly on lexical level

 But use bytekit for ELOC if it can

phpcpd

 By Sebastian Bergmann

 Simple tool to detect duplicated code

 Works at lexical analysis level

 Use the tokenizer to minimize differences

 Comments, whitespaces, …

 Takes a minimum number of lines and tokens

 Encodes according to this

 Uses an hash table to find duplicates

vld

 Vulcan Logic Disassembler

 By Derick Rethans

 Works at bytecode level

 Shows generated bytecodes

 Calculates possible paths (CFG)

 Find unreachable code

 Could be used for code coverage path metrics

vld

 Output

vld

 Output

Bytekit

 By Stefan Esser (SektionEins)

 Works at … bytecode level

 Similar to vld

 Exposes opcodes to a PHP array

 bytekit_disassemble_file($filename)

 Can be used directly for a custom script

Bytekit

 CFG visualisation

Bytekit-cli

 By Sebastian Bergmann

 PHP Interface to use bytekit to spot violation rules

 Initial state

 Implemented rules :

 Check for disallowed opcodes (example eval, exit)

 Check for direct output of variables

 In svn, check for unescaped ZendView

Padawan

 By Florian Anderiasch

 Focus on anti-pattern detection

 alpha (?)

 Works on syntactic analysis level

 Based on PHC (PHP compiler)

 Use an XML dump of the AST PHC generates

 Makes xpath searches on it

Padawan

 Interesting approach

 Rules are fairly simple to write

 Already many interesting tests :

 Empty constructs (if, else, try,..), unsafe typecasts, loop
repeated calls, unused keys in foreach, …

 PHC not easy to install

 Risk on PHC manteinance

Phantm

 By Etienne Kneuss

 Highly experimental
 Severe limitation on PHP dynamic features

 False positives

 Works on syntax analysis level
 Based on Java tools (Jflex, CUP, Scala)

 Reports violations
 Non top-level declarations, call-time pass-by-ref, nontrivial

include calls, assign in conditional, …

 Exploring Type Flow Analysis
 Tries to infer types and check for type safety

Conclusion

 Use the right tool for the right job

 Coding style is better analysed at the lexical level

 OO design is better viewed after syntactic analyses

 Unreachable code after bytecoding

 Contribute !

 Plenty of things still to implement

 Easy to have new ideas

 At least use them (you should!) and give feedback

Restitution

 Once all this is collected what to do with it ?

 At least, show it in a suitable form

 At best, integrate this in your CI system

phpUnderControl

 By Manuel Pichler

 CI for PHP

 Based on CruiseControl
 Integrates natively various tools :

 PHPUnit (+XDebug for code coverage),

 PHP_CodeSniffer

 PHPDocumentor

 PMD via PHPUnit (now PHPMD)

phpUnderControl

 What it gives : metrics graphs

phpUnderControl

 What it gives : report lists

phpUnderControl

 What it gives : PHPCodeBrowser

Arbit

 By Qafoo (with Manuel Pichler)

 Basically a project multi-services tool

 Ticketing system

 Repository browser

 Continuous integration

 As Manuel is in it, some graphical
presentations are unique for this tool

 Still alpha

Arbit

 What it gives : more metrics graphs

Arbit

 What it gives : PHP_Depend overview

Arbit

 What it gives : Annotated sources

Plugins Sonar for PHP

 By me
 Really by the Java guys at SQLI
 Frédéric Leroy, Akram Ben Aissi, Jérôme Tama

 Sonar is the state of the art for Open Source QA
Reporting in Java
 Thought for multilanguage

 Can easely integrate all PHP reportings ported from
Java tools
 Junit => PHPUnit
 JDepend => PHPDepend
 Java PMD => PHPMD

Plugins Sonar for PHP

 Ok, not always so easely
 CheckStyle is not PHP_CodeSniffer

 Formats are not identical

 Multi-language doesn’t mean no work to add one

 First release on May 2010
 0.2 Alpha state, but workable

 Easy to install : give it a try !

 Last version demo : sonar-php.sqli.com

 Ok, enough, here are the screenshots

Plugins Sonar for PHP

 Dashboard

Plugins Sonar for PHP

 Components : treemaps

Plugins Sonar for PHP

 Time machine

Plugins Sonar for PHP

 Hotspots

Plugins Sonar for PHP

 Violations

Plugins Sonar for PHP

 Editing Code Profile

Conclusion

 Sonar really goes further

 Best integrates with Hudson

 Still is java…

 But SonarSource really cooperates

 How to interact with phpUnderControl, Arbit ?

 (actually our solution – PIC PHP SQLI- is based on
phpUC + Sonar)

 This needs to evolve

