
LISTEN AND LOOK

AT YOUR PHP CODE!

Gabriele Santini
Forum AFUP 2010

Gabriele Santini

 Architect/Consultant at SQLI

 Contributor to PHP_CodeSniffer
 So expect a special focus on this…

 Sonar PHP Plugin
 I have to show you!

 Ex-mathematician :
 love business modelling
 love architectures
 love quality assurance

Static Analysis

 All you can say about your program without actually
execute the code

 The rest is also interesting, let’s talk about it another time !

 Examples ?

 Syntax check, coding style, anti-patterns, metrics,
OO design analysis, …

 What PHP does before executing the code ?

Levels of analysis

 Lexical analysis

 Read sources linearly searching for known patterns

 Convert them to a sequence of tokens

Levels of analysis

 Lexical analysis

 Read sources linearly searching for known patterns

 Convert them to a sequence of tokens

 Syntactic Analysis

 Parse the tokens to find their logical structure

Levels of analysis

 Lexical analysis

 Read sources linearly searching for known patterns

 Convert them to a sequence of tokens

 Syntactic Analysis

 Parse the tokens to find their logical structure

 Opcode (Bytecode) Generation

 Generates an intermediary code that the Zend Engine
will be able to execute

Lexical Analysis

 Tokenizer 1 <?php T_OPEN_TAG

2 if T_IF

2 T_WHITESPACE

(

2 1 T_LNUMBER

2 T_WHITESPACE

<

2 T_WHITESPACE

2 2 T_LNUMBER

)

2 T_WHITESPACE

{

2 T_WHITESPACE

3 echo T_ECHO

3 T_WHITESPACE

3 "Hello" T_CONSTANT_ENCAPSED_STRING

;

3 T_WHITESPACE

}

4 T_WHITESPACE

5 ?> T_CLOSE_TAG

<?php

if (1 < 2) {

echo "Hello";

}

?>

Syntactic Analysis

 Produces an AST

 Abstract Syntax Tree

 Decompose code in a tree-like form

 Can be executed once a context is given

 Used in compilers

Syntactic Analysis

Opcodes Generation

 Mistery tool…

line # * op return operands

--

2 0 > EXT_STMT

1 IS_SMALLER ~0 1, 2

2 > JMPZ ~0, ->6

3 3 > EXT_STMT

4 ECHO 'Hello'

4 5 > JMP ->6

6 6 > EXT_STMT

7 > RETURN 1

<?php

if (1 < 2) {

echo "Hello";

}

?>

GIVE US THE TOOLS !

PHP_CodeSniffer

 By Greg Sherwood

 PEAR library

 Venerable project

 Code Style

 But also a lot more

 Works at lexical analysis level

 Heavily use the tokenizer extension

PHP_CodeSniffer

 Hands on

PHP_CodeSniffer

 Sniffs
 Classes that detect Violations
 One or more type per class

 Grouped in folders by subject:
 Commenting, Formatting, WhiteSpace

 Files, ControlStructures, Strings

 Functions, Classes, NamingConventions

 CodeAnalysis, Metrics

 You can create your own!

PHP_CodeSniffer

 Standards

 Sets of Sniffs that define your coding style

 Installed :

 PEAR,

 Generic,

 Zend*,

 Squiz, MySource

 PHPCS

PHP_CodeSniffer 1.3

 Rulesets XML!

<ruleset name="MyPEAR">

<description>A variation of the PEAR coding standard.</description>

<!-- Include some additional sniffs from the Generic standard -->

<rule ref="Generic.Functions.FunctionCallArgumentSpacing"/>

<message>Please review spacing in function ‘%s’</message>

</rule>

<rule ref="Generic.NamingConventions.UpperCaseConstantName"/>

<!-- Lines can be 90 chars long, but never show errors -->

<rule ref="Generic.Files.LineLength">

<properties>

<property name="lineLimit" value="90"/>

<property name="absoluteLineLimit" value="0"/>

</properties>

</rule>

<!– Not so important for us -->

<rule ref="Generic.PHP.DisallowShortOpenTag">

<severity>2</severity>

</rule>

</ruleset>

Inside PHP_CodeSniffer

 Sniff class main methods
 register()
 Make the sniff a listener for the declared tokens

 process($phpcsFile, $stackPtr)
 Called by the file during parsing when a declared token is

found

 File
 Represents a parsed file

 Holds the tokens structure and offers convenience
methods

Inside PHP_CodeSniffer

 Life of a Sniff

 DisallowMultipleStatementsSniff

<?php

echo $y;

$x = 10; echo $y;

for ($i = 1; $i < $length; $i++) {

echo 'x';

}

echo $x;

$y = 2;;

$this->wizardid = 10; $this->paint(); echo 'x';

?>

Inside PHP_CodeSniffer

 Life of a Sniff

 DisallowMultipleStatementsSniff

public function register()

{

return array(T_SEMICOLON);

}

public function process($phpcsFile, $stackPtr)

{

[…]

Inside PHP_CodeSniffer

 Life of a Sniff

 DisallowMultipleStatementsSniff

<?php

echo $y;

$x = 10; echo $y;

for ($i = 1; $i < $length; $i++) {

echo 'x';

}

echo $x;

$y = 2;;

$this->wizardid = 10; $this->paint(); echo 'x';

?>

Inside PHP_CodeSniffer

 Life of a Sniff

 DisallowMultipleStatementsSniff

<?php

echo $y;

$x = 10; echo $y;

for ($i = 1; $i < $length; $i++) {

echo 'x';

}

echo $x;

$y = 2;;

$this->wizardid = 10; $this->paint(); echo 'x';

?>

$stackPtr

Inside PHP_CodeSniffer

 Life of a Sniff

 DisallowMultipleStatementsSniff

public function register()

{

return array(T_SEMICOLON);

}

public function process($phpcsFile, $stackPtr)

{

$tokens = $phpcsFile->getTokens();

$previous = $phpcsFile->findPrevious(…);

if ($previous === false) {

return;

}

// Continue =>

Inside PHP_CodeSniffer

 Life of a Sniff (2)

// Ignore multiple statements in a FOR condition.

// First some gym for nested parenthesis

[…]

if ($tokens[$owner]['code'] === T_FOR) {

return;

}

[…]

// If the previous semicolon is on the same line we add an error

// to this file

if ($tokens[$previous]['line'] === $tokens[$stackPtr]['line']) {

$error = 'Each PHP statement must be on a line by itself';

$phpcsFile->addError($error, $stackPtr);

return;

}

}//end process()

PHP_CodeSniffer

 At SQLI we have some framework standards

 Zend Framework

 Based on Thomas Weidner work

 Symfony

 In collaboration with Fabien Potencier

 Waiting for a serious release after 1.3 release

PHP_CodeSniffer

 At SQLI we have some framework standards

 Zend Framework

 Based on Thomas Weidner work

 Symfony

 In collaboration with Fabien Potencier

 Waiting for a serious release after 1.3 release

 That’s nice, but…

 Where are the standards for the other tools ?

 I’ld expect a Drupal, Wordpress, Cake official standard

PHP_CodeSniffer

 How far a standard can go in detection ?

PHP_CodeSniffer

 How far a standard can go in detection ?

 Interestingly far for generic PHP Code

PHP_CodeSniffer

 How far a standard can go in detection ?

 Interestingly far for generic PHP Code

 Very far if you know your tool’s structure

 Imagine for example forcing PHP alternative syntax in
Symfony views…

 Or checking for escaping in Zend Views !

PHP_Depend

 By Manuel Pichler

 Functional port of JDepend

 OO design analysis

 Metrics visualisation

 Dependency analyzer

 Works at the syntactic analysis level

PHP_Depend

 How it works

 PHP_Depend first makes an AST off your code

 A « personal » one, made by PHP objects

 ASTComment, ASTClosure, ASTEvalExpression, …

 This is made by the Builder/Parser component

 Using PHP Reflection

PHP_Depend

 How it works (2)

 Then PHP_Depend can answer questions by
« visiting » the AST

 Task of Metrics Analyzers, that extend AbstractVisitor

 IOC, the visitor decides what to do according to AST
Class : visitMethod, visitForStatement(), …

 Analyzers can fire listeners during analyze() call

 To get ongoing informations about the visit process

PHP_Depend

 What it gives:

 The Abstraction/Instability graph

PHP_Depend

 What it gives:

 The Abstraction/Instability graph

PHP_Depend

 What it gives:

 The Pyramid !!

PHPMD

 By Manuel Pichler

 Detects rules violations

 Analog to PHP_Codesniffer

 Works at syntactic analysis level

 Actually on the same AST

 Depends on PHP_Depend

 Has rulesets !

PHPMD

 What it gives:

 Code Size Rules
 complexities, lengths, too many, …

 Design Rules
 OO, exit, eval

 Naming Rules
 Too short/long identifiers, old constructors, …

 Unused Code Rules
 Methods, members, parameters

phploc

 By Sebastian Bergmann

 Simple tool to give basic metrics

 Fast, direct to the goal

 Works mostly on lexical level

 But use bytekit for ELOC if it can

phpcpd

 By Sebastian Bergmann

 Simple tool to detect duplicated code

 Works at lexical analysis level

 Use the tokenizer to minimize differences

 Comments, whitespaces, …

 Takes a minimum number of lines and tokens

 Encodes according to this

 Uses an hash table to find duplicates

vld

 Vulcan Logic Disassembler

 By Derick Rethans

 Works at bytecode level

 Shows generated bytecodes

 Calculates possible paths (CFG)

 Find unreachable code

 Could be used for code coverage path metrics

vld

 Output

vld

 Output

Bytekit

 By Stefan Esser (SektionEins)

 Works at … bytecode level

 Similar to vld

 Exposes opcodes to a PHP array

 bytekit_disassemble_file($filename)

 Can be used directly for a custom script

Bytekit

 CFG visualisation

Bytekit-cli

 By Sebastian Bergmann

 PHP Interface to use bytekit to spot violation rules

 Initial state

 Implemented rules :

 Check for disallowed opcodes (example eval, exit)

 Check for direct output of variables

 In svn, check for unescaped ZendView

Padawan

 By Florian Anderiasch

 Focus on anti-pattern detection

 alpha (?)

 Works on syntactic analysis level

 Based on PHC (PHP compiler)

 Use an XML dump of the AST PHC generates

 Makes xpath searches on it

Padawan

 Interesting approach

 Rules are fairly simple to write

 Already many interesting tests :

 Empty constructs (if, else, try,..), unsafe typecasts, loop
repeated calls, unused keys in foreach, …

 PHC not easy to install

 Risk on PHC manteinance

Phantm

 By Etienne Kneuss

 Highly experimental
 Severe limitation on PHP dynamic features

 False positives

 Works on syntax analysis level
 Based on Java tools (Jflex, CUP, Scala)

 Reports violations
 Non top-level declarations, call-time pass-by-ref, nontrivial

include calls, assign in conditional, …

 Exploring Type Flow Analysis
 Tries to infer types and check for type safety

Conclusion

 Use the right tool for the right job

 Coding style is better analysed at the lexical level

 OO design is better viewed after syntactic analyses

 Unreachable code after bytecoding

 Contribute !

 Plenty of things still to implement

 Easy to have new ideas

 At least use them (you should!) and give feedback

Restitution

 Once all this is collected what to do with it ?

 At least, show it in a suitable form

 At best, integrate this in your CI system

phpUnderControl

 By Manuel Pichler

 CI for PHP

 Based on CruiseControl
 Integrates natively various tools :

 PHPUnit (+XDebug for code coverage),

 PHP_CodeSniffer

 PHPDocumentor

 PMD via PHPUnit (now PHPMD)

phpUnderControl

 What it gives : metrics graphs

phpUnderControl

 What it gives : report lists

phpUnderControl

 What it gives : PHPCodeBrowser

Arbit

 By Qafoo (with Manuel Pichler)

 Basically a project multi-services tool

 Ticketing system

 Repository browser

 Continuous integration

 As Manuel is in it, some graphical
presentations are unique for this tool

 Still alpha

Arbit

 What it gives : more metrics graphs

Arbit

 What it gives : PHP_Depend overview

Arbit

 What it gives : Annotated sources

Plugins Sonar for PHP

 By me 
 Really by the Java guys at SQLI
 Frédéric Leroy, Akram Ben Aissi, Jérôme Tama

 Sonar is the state of the art for Open Source QA
Reporting in Java
 Thought for multilanguage

 Can easely integrate all PHP reportings ported from
Java tools
 Junit => PHPUnit
 JDepend => PHPDepend
 Java PMD => PHPMD

Plugins Sonar for PHP

 Ok, not always so easely
 CheckStyle is not PHP_CodeSniffer

 Formats are not identical

 Multi-language doesn’t mean no work to add one

 First release on May 2010
 0.2 Alpha state, but workable

 Easy to install : give it a try !

 Last version demo : sonar-php.sqli.com

 Ok, enough, here are the screenshots

Plugins Sonar for PHP

 Dashboard

Plugins Sonar for PHP

 Components : treemaps

Plugins Sonar for PHP

 Time machine

Plugins Sonar for PHP

 Hotspots

Plugins Sonar for PHP

 Violations

Plugins Sonar for PHP

 Editing Code Profile

Conclusion

 Sonar really goes further

 Best integrates with Hudson

 Still is java…

 But SonarSource really cooperates

 How to interact with phpUnderControl, Arbit ?

 (actually our solution – PIC PHP SQLI- is based on
phpUC + Sonar)

 This needs to evolve

